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STEADY-STATE CONFIGURATIONS OF THE DEFORMATION REGION AND 

THE FORCE BALANCE IN THE DRAWING OF AN OPTICAL FIBER 

V. N. Vasil'ev and V. D. Naumchik UDC 532.522 + 681.7.068.4 

Fiber light guides are thin glass fibers formed from a liquid mass drawn through a die 
or pulled from a cylindrical semifinished product as a result of its symmetrical local heating 
to about 2000~ Passing through air, the quartz glass melt forms a liquid stream with a 
free surface whose form is determined by the equilibrium between the forces of internal 
friction, surface tension, gravity, friction against the air, the force of acceleration on 
the glass, and the shearing force. The stream cools as it descends and, after application of 
the first polymer coating, the cold fiber enters a rotating drum. The drum maintains tension 
in the stream, forcing it to become thinner as cooling proceeds. The behavior of the molten 
stream of quartz glass can be examined on the basis of the gasdynamic equations of an incom- 
pressible Newtonian fluid and the energy equations, since the equation of motion contains the 
absolute viscosity - which is a function of temperature. Recent experimental findings show 
that shear flow occurs during the drawing of optical fibers [I]. Until now, there has been 
no reliable theory for calculation of the two-dimensional distribution of temperature and 
velocity in a jet of a high-viscosity liquid with a free surface. Thus, it is usually the 
practice to make several assumptions (examined in more detail in [2]) which make it possible 
to reduce the problem to a unidimensional problem. However, no detailed analysis of the 
drawing of optical fibers has been made even within the framework of unidimensional models. 
Here, the approaches have been either to solve only the hydrodynamic problem and assume that 
the viscosity distribution along the deformation is simply prescribed or to introduce an 
excessively simplified energy equation which does not adequately describe the process of heat 
transfer during fiber drawing. 

Here, we examine the main results of a study of the formation of optical fibers obtained 
on the basis of a quasiunidimensional mathematical model whose basis principles were described 
in [3]. We will also analyze the balance of the forces acting in the deformation region 
during the formation of a fiber by the bead method. 

i. The process of the formation of an optical fiber is examined in the simple uniaxial 
tension of a Newtonian fluid with variable viscosity determined by the temperature distribu- 
tion. The temperature distribution is found from the energy equation. In formulating the 
system of equations describing the dynamics of fiber drawing, it was assumed that except for 
viscosity, the physical properties of the liquid are constant, the liquid is isotropic, and 
its motion is axisymmetric. 

The equations of continuity 

aR aR Rav. (i. I) 
a~ --~a7 q- 2 ax' 
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and energy for the heating of the semifinished product in the furnace 

(1 .3 )  4~~176 (~ + n'2)~/2 i ~f(~l)[1 + n ?  (~,)]~/2 [~f~r~t~) - 8T q 
+ ~ { (n - -x )2+[Rf (q) - -R]  2 cos ~ cos ~id~ ] 

were obtained from the laws of conservation of mass, momentum, and energy [3]. Here, R is 
the form of the surface of the stream; v, longitudinal component of the motion of the glass; 
r, time; x, longitudinal coordinate; g, acceleration due to gravity; ~, absolute viscosity; 
a, surface tension; c, specific heat; p, density; T, temperature; a0, Stefan-Boltzmann con- 
stant; ~ and ~p, integral emittances of the stream surface and furnace; fl, absorption coeffi- 
cient of the glass; fl = I - r; r, coefficient of reflection from the stream surface, calcu- 
lated from the Fresnel formulas; no, refractive index of the gas blown through the furnace; 
T 2, a function describing the distribution of the temperature of the gas along the theoretical 
region; Rf, a function describing the form of the generatrix of the surface of the heating 
element; h, local value of the coefficient of external heat transfer; Tf, temperature dis- 
tribution along the surface of the heating element; H, mean curvature of the stream surface 
[2]: 

H 

COS r 

2R (l + n'2) 3/2' cos ~ ~ (i § 

t 
( l+n '~)  ~ / ~ [ R f - R - I R ' l ( z - I ] ) l '  s ~ = ( n - - x )  ~ +  [R f(~q) --  R] ~, 

R '  OR R" a;R , dRf 

The last term in the right side of the energy equation characterizes the flow of radiant 
energy, which decreases from the surface of the heating element to the surface of an elemen- 
tary area dA in the section x. The quantity Aef is present due to the fact that quartz glass 
melt is a translucent medium, and energy is transferred by conduction and radiation simul- 
taneously. Estimates show that the approximation of an optically thick layer is not satisfied 
in the drawing of light guides. Rigorous solution of the problem of the simultaneous transfer 
of heat by radiation and convection entails serious mathematical difficulties because the 
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energy and radiative transport equations are coupled; the radiation equation contains temper- 
ature, while the energy equation contains the density of the resulting radiant flux. Thus, 
to simplify the problem, it is best to approximate radiative heat transfer an analogy with 
the Fourier law and to find the coefficient of radiative heat transfer from the solution of 
the radiative transport equation, assuming that the temperature distribution and the form of 
the theoretical region are given. The last limitation, i.e. assigning the temperature 
distribution and the form of the theoretical region, is immaterial because the author of [3] 
has developed an algorithm to find the steady-state solution of system (1.1-1.3) based on the 
establishment method which makes it possible to correct the radiative heat-transfer parameters 
on the basis of another algorithm [4] as the iterations converge with respect to time. 

Let us examine the calculation of the local coefficient of external heat transfer and 
the temperature of the gas blown through the heating zone. In calculating h and T~, we made 
the following assumptions: 

i) estimates of the thickness of the boundary layer show that it does not completely 
fill the cross section of the channel. Thus, heat transfer can be examined independently for 
each wall; 

2) since mixed convection takes place in the channel, the local value of the Nusselt 
number was found from the relation [5] Nu~ = Nude + Nu~/ . It was assumed that mixed convection 
occurs from a vertical cylinder on section I (Fig. i), from a vertical cone on section 2, 
and, on section 3, from a thin vertical fiber in a longitudinal air flow and from the surface 
of the furnace - regarded as a vertical plate; the local value of the Nusselt number with 
natural convection NUxn and forced convection Nuxf was found from the corresponding relations 
given in [6-8]; 

3) it was assumed that the temperature of the gas along the channel changes linearly 
from the temperature T21 at the inlet to T2z at the outlet; Ti= (Tl~ _ Tlz)x/L _~ TZ~; 

4) estimates show that the pressure gradient in the channel is much less than unity, so 
the temperature distribution in the channel can be found from the mass conservation law with 

- - 2  2 I 

allowance for thermal expansion of the gas, i.e. Vg(X)= 9g(X) ~ _R~' where Rf=-f. Rfdx 
0 

is the mean radius of the inside surface of the heating element; pg is the density of the 
gas; vg is the velocity of the gas; the subscript ~ refers to parameters at the inlet of the 
channel. 

On the basis of the law of energy conservation, the change in the internal energy of the 
gas is equal to the amount of heat supplied by the side walls of the channel, i.e. 

l l 

PglCpl~:f ( R ~ - -  R~) (Tl2 - -  T l 1) = 2 f h (T - -  T l ) R  (1 + R'"-) ~:'~ dx + 2Rf i' hf (Tf--  Tl) dx. (1.4)  
0 0 

I n s e r t i n g  the  r e l a t i o n  T~(x) i n t o  (1 .4)  and s o l v i n g  the  r e s u l t i n g  e q u a t i o n  f o r  T~2 we o b t a i n  
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The temperature at the outlet of the channel is calculated by an iterative procedure. 

We assign a certain initial approximation ef the temperature T~2 , we calculate T~(x), vs(x), 
and Nu x and we use (1.5) to refine the value of r~2. The iteration is ended when IT~I--T~II 
<A (i is the number of the iteration and A is the accuracy of the computations). In Eqs. 
(1.4) and (1.5), hf is the local value of the coefficient of external heat transfer from the 
surface of the furnace and cp2 is the isobaric specific heat of the gas at the channel inlet. 

As the first step in studying the formation of optical fibers, the author of [3] devel- 
oped an algorithm for numerically solving the system of governing equations (1.1)-(1.3) in 
order to find the velocity and temperature distributions and the form of the deformation 
region in the steady state (aT/O~ = 0v/0~ ~ 0R/aT ~ 0) with the following boundary conditions: 
v = v0, T =Tt, R = R 0 at x = 0, v = ~'l, T = T t at x = ~, where v 0 is the rate of feed of the 
semifinished product into the heating zone; v~ is the rate of fiber extraction; R 0 is the 
radius of the semifinished product; T t is the temperature at the boundaries of the theoretical 
region. 

Let us illustrate the dependence of the profile of the stream R(x) and the distributions 
of velocity v(x) and temperature T(x) on different parameters of the extraction process. We 
assumed the following in the calculations: R 0 = 5 mm, fiber radius at the receiving unit 64 
#m, glass density p = 2.2"103 kg/m 3, specific heat of the glass c = 1.043'103 J/(kg'K), 

o = 0.3 N/m, the refractive index of the gas blown through the furnace n c = i, its specific 
heat Cps = 5.2.103 J/(kg-k), temperature at the inlet Ts = 400~ velocity vs = i m/sec, 
integral emittance of the surface of the furnace ef = 0.97. It was assumed that the form 
of the inside surface of the heating element was cylindrical and that the surface had a 

radius Rf = I0 mm. The temperature distribution along its surface was modeled by the function 
(see Fig. i) 

Tfl, - - a l < O < O ,  ( a 2 - - a ~ ) < O < ( l - - a i )  , 

Tfx +(Tf2--~l) 6.75O~(Ot--O)2, 0 ~ O ~ 2 0 t ,  
8t (1 .6)  

= 2 2 0 t ~ < 0 ~ 0 o  _.~ Ot, T f (0) Tf,2, y 

Tf ~ + (Tf2 -- Tf ~) 6.75 (0~ - -  0)2 (0 + 0 t . -  Oo) 0o _ ~ 0 t  ~ 0 ~< 0o,, 

where O0 = a=--al; 0 = q--al; Tf2 is the maximum temperature of the surface of the heating 

element; 0/00= ~, 0.75~0.075. Equation (1.6) adequately approximates the temperature 
distribution along the surface of the heating element, since it presumes that the temperature 
profile includes a core 8~ with a constant temperature and a gradient part (near the boundary 
surfaces), where temperature changes in accordance with the law of a cubic parabola. Varying 
the temperatures Tfl, Tfz with the size of the central section (Sf is determined by the 
constant f, 0f = 0 at f = 0.75 and 8f = 0.900 at f = 0.075) and the length of the heated 
section a z - a I makes it possible to change the temperature distribution along the surface of 
the heating element and thereby model different thermal regimes for fiber extraction. The 
dependence of the viscosity of the glass melt on temperature was taken from [9], while the 
size of the heated section is always i0 cm. 

Figures 2 and 3 show the form of the stream surface R(x) and the temperature distribution 
T(x) for the heated section for different withdrawal rates 2, 3 and different temperature 
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profiles along the heating element I, 4. Here, curves 2 and 3 correspond to the temperature 
distribution along the surface of the heating element, Tfl = 1400~ Tfz = 2100~ f = 0.375, 
extraction rate v 2 = 0.5 m/sec (for 3) and v 2 = 1.5 m/sec (for 2). Curves I and 4 correspond 
to v~ = 0.5 m/sec, Tfl = 1200~ Tf2 = 2100~ f = 0.75 (for I) and f = 0.075 (for 4). It is 
evident that the temperature distribution and the configuration of the deformation region 
depend appreciably on the conditions of fiber formation and, in the present case, on the 
extraction rate and the thermal regime for heating the semifinished product in the furnace. 
The axial velocity changes fairly smoothly in the upper part of the deformation region. The 
main increase in axial velocity occurs on the final section of fiber formation over a very 
short time interval. 

The length of the deformation region during heating of the semifinished product in the 
furnace (by the deformation region, we mean the region of the stream located between the 
sections where the stream is thinned and where its velocity changes from the rate of product 
feed into the heating zone to the extraction velocity, to within 1%) depends mainly on the 
diameter of the semifinished product, extraction rate, and the amount of heat supplied and 
its lengthwise distribution. The lengthwise distribution of heat flux is in turn determined 
by the form of the heating element and the temperature profile along its surface. The length 
of the deformation region also depends on the outgoing heat flux, which in turn depends on 
the coefficient of external heat transfer. Figure 4 shows the dependence of the length of 
the deformation region on v 2 (R 0 = 0.Scm, $ = 0.375, Tfl = 1400~ Tf~ = 2100~ 

The calculated results show that, due to the large value of Aef (according to our es- 

timates, Aef - 40 W/(m'K) [4]) ignoring the term -~a {%efR~a-~T ~ in the energy equation will 
' Ox\ Oxl' 

lead to significant errors in the determination of the temperature field in the deformation 
region. At the same time, the amount of heat given off due to dissipation of mechanical 
energy does not significantly affect the temperature distribution. 

2. In developing mathematical models of the drawing of optical fibers it is usually 
assumed that the viscous forces are so great that, compared to them, it is possible to ignore 
the force of gravity, friction against the air, surface tension, and inertia. However, this 
is not certain, since the effect of each component of stream tonsion Ff changes along the 
deformation region and depends on the specific conditions of fiber formation. 

The equation expressing the balance of forces acting in the deformation region at a 
distance x along the region is written in the form [I0] 

F~ + Fg~) = F.(x) + F~(z) + f~(x)  + F~(z), (2. l)  

where Fg(x), F~@), Fs(x), Fi~(x), Fa(x ) are the force of gravity, viscous drag, surface tension, 
inertia, and air resistance. 

We will examine each component of stream tension Ff in Eq. (2.1) separately. The force 
F~ depends on the velocity and viscosity of the glass in the given section. Assuming that we 
are dealing with the simple uniaxial tension of a Newtonian fluid 

f~ = 3n~R~O~ax. (2.2) 

Surface tension is manifest due to curvature of the stream surface and, in accordance with 
the Laplace law, is equal to 
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Fs = ~R2cIH, ( 2 . 3 )  

the force F~n is expended on acceleration of the fluid from a certain velocity in the section 
x to t h e  f i b e r  e x t r a c t i o n  v e l o c i t y  i n  t he  s e c t i o n  x = 2, i . e .  

l 

F ~  = ~p R2v-~xdx. ( 2 . 4 )  
x 

the  l a s t  t e rm i n  t he  r i g h t  s i d e  o f  ( 2 . 1 )  i s  d e t e r m i n e d  by  f r i c t i o n a l  r e s i s t a n c e  d u r i n g  the  
motion of the stream in the environment 

Z 

F~ = 2~ ~ Px~Rdx, ( 2 . 5 )  
x 

where Pxz is the local shear stress which develops on the surface of a body moving at the 
velocity v in a medium with the density pg~ Pxr =(I/2) X~u~cf; cfis the mean drag coefficient, 
dependent on the velocity of the body, ~he geometry of its surface, and the kinematic vis- 
cosity of the medium v s . The value of cf can be evaluated from the formula cf = 0.4(Re2) -~ 
which was obtained in [Ii] on the basis of the theory of a turbulent boundary layer for a 
stationary cylinder in a longitudinal gas flow. Here, Re 2 = vsR/us. In the region of forma- 
tion of the optical fiber in the direction of the extraction force, the force of gravity acts 
on the stream 

1 

Fg = n9g S R~dx" 
x 

(2.6) 

The tension in any section of the stream can be assumed constant, while the relationship 
of the remaining forces with each other changes along the stream. Figure 5 shows the results 
of the use of Eqs. (2.2)-(2.6) to calculate individual components of the tension on the fiber 
along the formation zone (the solid lines correspond to R o = 0.5 cm, v l = 0 . 5  m/sec ~ Tfl = 1400~ 
Tf2 =2050~ ~ = 0.375, while the dashed lines correspond to R 0 = 0.9 cm). Besides Fp, Fg and 
F s turn out to have a significant effect on fiber tension in the upper part of the deformation 
region. Farther along the path of deformation, Ff is almost completely balanced by viscous 
drag F~. The effect of the force of gravity and surface tension depend on the specific 
conditions of formation. Specifically, their effect depends on the method used to heat the 
semifinished product, since this for the most part determines the form of the deformation 
region [12]. It follows from (2.3) and (2.6) that we should expect the effect of F s to 
increase with a decrease in the length of the deformation region, since in this case there 
will be an increase in the mean curvature of the surface H and a reduction in the effect of 
Fg. On the other hand, the level of the significance of Fg and F s depends appreciably on the 
degree of heating of the glass along the deformation zone. For example, with R 0 = 0.5 em, u z 
= 0.5 m/sec, Tft = 1400~ = 2000~ ~ = 0,75 the contribution of gravity and surface tension to 
the overall tension of the stream becomes small over the entire deformation region compared 
to the contribution of viscous drag. The small forces of inertia and air resistance - in 
contrast to the case of the formation of textile polymers and operational glass fibers [I0, 
13] - are'attributable to the low extraction velocity. Thus, the completed calculations show 
that in developing mathematical models of the process of optical fiber drawing, it is best to 
consider F 8 and F, in the equation of motion along with Fp. 

3. An examination of the force balance equation (2.1) shows that the tensile force 
depends on the conditions of fiber formation and the properties of the glasses. Figure 6 
shows the dependence of Ff on v 2 and the heating regimes in the furnace (Tfl = 1400~ = 
0.g75, R0=0.5 cm). Calculations of both Ff and R indicate that the tensile force and the form 
of the stream surface (see Part i) are very sensitive to fluctuations in the conditions of 
fiber formation (a change in the feed or extraction rates, cooling and heating conditions, 
the physical characteristics of the glasses) and can therefore be used as characteristics of 
the stability of the drawing operation. Deviations of these quantities from their nominal 
values can be used to construct algorithms for controlling the drawing process. On the other 
hand, during tension of the fibers a large role is played by the change in the viscosity of 
the glass along the deformation path. The viscosity in turn depends on several factors, the 
principal factor being temperature. The data presently available on ~ is ill-suited for 
reliable use in specified applied investigations because the viscosity of the glass is very 
sensitive to processing features and chemical composition [9]. Equation (2.1), for a steady- 
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state stream of molten glass, is equivalent to motion equation (1.2); thus, with a known form 
of the stream surface R(x) and a known extraction force Ff - which can be determined ex- 
perimentally - we determine the viscosity profile along the deformation region as: 

z l ! 

pg R2dx__R2~H__p ~ R~v dV dx 2 PxrRdx 
' 3 dx 

~(~ = ~ ~ ~ ( 3 . 1 )  
du 

3R2d----x 

E q u a t i o n  ( 3 . 1 )  was o b t a i n e d  f rom ( 2 . 1 )  a f t e r  i n s e r t i n g  t h e  c o m p o n e n t s  o f  s t r e a m  t e n s i o n ,  and 
i t  a l l o w s  us  t o  d e t e r m i n e  t h e  t e m p e r a t u r e  d e p e n d e n c e  o f  v i s c o s i t y  w i t h  s i m u l t a n e o u s  m e a s u r e -  
ment  o f  t h e  fo rm o f  t h e  s t r e a m ,  e x t r a c t i o n  f o r c e ,  and t h e  t e m p e r a t u r e  d i s t r i b u t i o n  a l o n g  t h e  
d e f o r m a t i o n  r e g i o n  d u r i n g  f i b e r  d e f o r m a t i o n .  E q u a t i o n  ( 3 . 1 )  can  a l s o  be  u s e d  t o  f i n d  t h e  
t e m p e r a t u r e  d i s t r i b u t i o n  b y  m e a s u r i n g  R(x)  and Ff i f  ~ (T)  i s  known f o r  t h e  g l a s s .  
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